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ABSTRACT

The eigenvalues of rotating blades usually change with rotation speed according to the

Stodola-Southwell criterion. Under certain circumstances, the loci of eigenvalues belonging

to two distinct modes of vibration approach each other very closely, and it may appear as

if the loci cross each other. However, our study indicates that the observable frequency loci

of an undamped rotating blade do not cross, but must either repel each other (leading to

"curve veering"), or attract each other (leading to "frequency coalescence"). Our results

are reached by using standard arguments from algebraic geometry--the theory of algebraic

curves and catastrophe theory. We conclude that it is important to resolve an apparent

crossing of eigenvalue loci into either a frequency coalescence or a curve veering, because

frequency coalescence is dangerous since it leads to flutter, whereas curve veering does not

precipitate flutter and is, therefore, harmless with respect to elastic stability.

aOn leave. Temporary address: Room 3-360, Department of Mechanical Engineering, MIT, Cambridge,
MA 02139.



I. INTRODUCTION

Rotatingbladesare commonly encounteredin a varietyof mechanicaland aeronautical

structuressuchasturbines,compressors,propfans,bladed-diskassemblies,and helicopters.

It is well known that such blades may flutter when a sufficiently high critical speed is reached

or exceeded. In this paper, the term 'flutter' is used in a generalized sense as frequently

done in applied mechanics to mean all kinds of self-excited oscillatory phenomena, with

an exponential growth in time. In this sense, flutter may occur without the participation

of aerodynamic forces, as in systems with 'follower force'. Also, there are basically two

types of flutter--'single mode flutter' and 'coalescence flutter'. This study is mainly about

coalescence flutter.

The problem of flutter in general is of vital importance not only in the case of rotating

blades, but also with respect to various engineering structures and components in aeronau-

tics. At the Lewis Research Center of the National Aeronautics and Space Administration,

a variety of theoretical and experimental investigations of flutter is currently in progress.

In this paper, we present a summary of a theoretical investigation of the flutter of rotat-

ing blades using mathematical techniques from algebraic geometry, i.e. catastrophe theory

(Arnol'd, 1983), and the theory of real algebraic curves (Brieskorn, 1986).

An important conclusion from our investigation is the following. Frequency loci be-

longing to two distinct modes of vibration will intersect each other only when the coupling

between the two modes is assumed to be completely absent. On the other hand, the presence

of a small but non-vanishing amount of coupling will cause the two loci to either repel each

other (leading to curve veering), or attract each other (leading to frequency coalescence).

Frequency crossing is illustrated in Fig. 1 (a), while curve veering and frequency coales-

cence are depicted, respectively, in Figs. 1 (b) and 1 (c). Curve veering is commonly called

"avoided crossing", especially in the physics literature. The term "curve veering" seems

to have been introduced to the engineering literature by Leissa (1974) in his study of the

eigenvalues of rectangular plates, while frequency coalescence is well known in aeroelasticity

as "coupled mode flutter", Bisplinghoff _z Ashley (1962).

The procedure used in arriving at our main result originates from the qualitative method

of mathematical models. The qualitative method was initiated by Poincar_ (1892) for

the study of differential equations. It was developed further by Andronov _z Vitt (1966),

who introduced the concept of "structural stability". The structural stability idea was

further developed by Thorn (1972) into catastrophe theory---"a general theory of models"

for applications in the physical, social and biological sciences.

There exist several studies in the literature on rotating blades where a crossing of eigen-

value loci, as in Fig. 2 (a), has been reported. For examples, one may cite the studies of °

MacBain (1975, his Fig. 10), Chen _:-Dugundji (1984, Fig. 5), Ramamurti &: Kielb (1984,

Figs. 4 and 10), among others. The principal reason why crossings of eigenvalue loci have



been published by many investigators is that the small but inevitable amount of "coupling"

between two interacting modes (such as bending and torsion) is usually ignored by such

investigators.

In reality, as distinct from theory , a small amount of coupling is unavoidable when two

eigenvalue loci approach each other very closely; see Section 2.3. This coupling could be

" "conservative" or "non-conservative" in the terminology of Crandall and Mroszczyk (1988).

Conservative coupling leads to curve veering, whereas non conservative coupling leads to

frequency coalescence. The role of coupling on curve veering has been discussed by Perkins

& Mote, Jr. (1988). However, the influence of coupling on the topology of eigenvalue loci

is, in general, usually overlooked or considered to be inconsequential by most investigators,

in their theoretical models of flutter of rotating blades. Consequently, when the results of a

large number of theoretical studies are examined, one finds that two or more eigenvalue loci

do intersect one another in such studies. Such results are, however, in serious qualitative

error, and have particular significance in propulsion systems in which the blading has a low
mass ratio.

2. EIGENLOCI CROSSING, VEERING OR COALESCENCE

In this section, we carry out a background discussion on the phenomena of frequency

crossing, curve veering, and eigenvalue coalescence. Our prototype element in this discussion

is the locus of an eigenvalue of a rotating blade as a function of the rotation speed.

2.1 Variation of Eigenvalues with Rotation Speed

It is now well known, due to the works of Stodola (1914), Lamb & Southwell (1921)

and SouthweU (1922), that the natural frequencies of a rotating blade or uniform disk vary

approximately as quadratic functions of the rotation speed, i.e.,

2
= + (la)

where m denotes a mode of vibration, _2 is the rotation speed, win(f2) is the natural fre-

quency at that speed, Win(O) is the bench natural frequency, measured when the rotation

speed is zero, and sm > 0 is a Stodola-Southwell coefficient for the mth mode of vibration.

In a more general case, Equation (la) may be written as a higher order polynomial, e.g. as

a cubic function of f2,

= + + 3+..., (lb)

Formula(la)iswidelyattributedto Southwellbut,accordingto Campbell(1924,p. 53),

theformulawas independentlyderivedearlierby Stodola(1914).The formuladerivedby



Southwell relates to uniform circular disks, while that of Stodola was derived for turbine

blades. In any case, experience has shown that equation (la) yields acceptable results not

only for turbine blades and uniform circular disks, but also for other types of rotating

structures such as helicopter blades, propellers, bladed disk assemblies, cylinders, etc.

2.2 Intersection of Projected Eigenvalue Loci

Consider a rotating blade modeled as a vibrating system having two degrees of freedom,

such that there is no coupling between the two modes of vibration. The two uncoupled

natural frequencies of the system may vary individually as functions of the rotation speed.

For example, the second bending and first torsional frequencies of a rotating blade generally

exhibit a variation with rotation speed. Let the natural frequencies at the non-rotating

condition of the bending and torsion modes for such a blade be written as w_(0) and w_.(0)

respectively. The frequency loci of the bending mode wS(!2) and the torsion mode WT(!2)

may appear as if they cross each other eventually at the rotation speed 12", as illustrated in

Fig. 2 (a). Alternatively, the frequencies may diverge from each other, as illustrated in Fig.

2 (b). This follows from the fact that the Stodola-SouthweU coefficients are not likely to be

exactly equal for the two modes, so that the two frequency loci would not be curvilinearly

"parallel".

As indicated earlier, there exist many studies in the literature on rotating blades where

crossings of eigenvalue loci as in Fig. 2 (a) have been reported. However, although eigenvalue

loci may apparently intersect, further analysis leads one to the conclusion that, in fact, such

loci do not cross. The loci may approach each other arbitrarily closely, but they do not

cross.

2.3 Eigenvalue Loci of Rotating Blades Do Not Cross

Observable frequency loci of rotating blades do not cross as a rule. There are at least two

reasons why frequency loci cannot cross each other in a realistic model of rotating blades.

The first follows from mathematical reasoning, and the other from physical or engineering

considerations.

The mathematical reason why a crossing does not occur in the frequency loci of real-

istic models of rotating blades is due to the fact that such a crossing signifies degenerate

eigenvalues (i.e coincident natural frequencies), and degenerate mathematical objects are

"structurally unstable", according to a corollary of the weak transversality theorem (Thorn

& Levin, 1959). As a result of the structural instability of degenerate objects, they are

unobservable. Under the smallest perturbation, such degenerate and unobservable objects

undergo a bifurcation and split into two or more structurally stable "generic" objects, which .

then become observable. This idea, called an "unfolding" by Thom, is very important in

catastrophe theory, Thom (1972), the theory of singularities of differentiable mappings,
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Arnol'd et al. (1985), and the theory of algebraic curves, Brieskorn (1986).

The physical or engineering reason why a crossing ofloci cannot be observed is due to the

inevitable existence of a coupling between two or more modes in a vibrating system when

such modes approach each other arbitrarily closely. This is called modal "interference",

mode "coupling", or modal "interaction" in vibration analysismsee, for instance, Afolabi

• (1991)--and is evidenced by the existence of non-zero, off-diagonal terms in the system

matrices. It is convenient to illustrate the foregoing with a two degree of freedom undamped

system. If the two eigenvalues of such a system are equal (at the critical rotation speed

at which the loci purportedly intersect), it would imply that the system has degenerate

eigenvalues at that critical speed. However, the only way a coupled two degree of freedom

system can have degenerate eigenvalues is when the system disintegrates into two identical,

uncoupled sub-systems, so that wl = w2. But this would violate the assumption that the

two degree of freedom system constitutes a coupled system, leading to a contradiction.

Although crossings of the eigenvalue loci of rotating blades do not occur in practice,

such crossings are frequently reported in various publications in structural dynamics. In

those theoretical studies where crossings have been reported, one finds that simplifying

assumptions have usually been made (implicitly or otherwise) leading to a loss of modal

coupling. In the case of experimental studies, what seems to be frequency crossings have

been reported because, typically, it is very difficult or expensive to record the large number

of data points that are required in the neighborhood of an assumed crossing, so that the

experimenter is unable to resolve whether a crossing has actually taken place or not. If a

special effort is made to gather sufficient data points in the neighborhood of the assumed

crossing, then one may be able to resolve the presumed crossing into either an avoided

crossing or a frequency coalescence.

2.4 Coalescence of Eigenvalue Loci Induces Flutter

In general, the quantitative difference between the eigenvalues in systems exhibiting a

crossing, an avoided crossing or a frequency coalescence, is usually very small, except in

the neighborhood of a crossing. Yet, for qualitative reasons, it is important to resolve an

apparent crossing into a coalescence or veering. The importance of this lies in the fact

that a frequency coalescence is a dangerous event, since it leads to flutter, whereas a curve

veering does not usually lead to flutter and is, thus, relatively harmless.

If, in a flutter analysis, one mistakenly predicts a frequency coalescence condition as

• a frequency crossing or a curve veering, then evidently one has erroneously downgraded

an unsafe flutter condition to a safe condition, with potential catastrophic consequences.

, Because there is a considerable qualitative difference between the dynamics of a system

exhibiting frequency coalescence on the one hand, and a system characterized by curve

veering or avoided crossing on the other hand, it is absolutely important to resolve an



apparent crossing into either a frequency coalescence or a curve veering.

€

3. MODE COUPLING

The existence or otherwise of mode coupling lies at the heart of a resolution of the

question as to whether a frequency crossing does or does not occur in a realistic model of

rotating blades. In what follows, we give three causes of mode coupling in rotating blades to

support the view point that mode coupling should not be assumed to be completely absent.

• 3.1 Mode Coupling Induced by Imperfection

In theoretical analyses of an assembly of rotating blades (such as bladed disk assemblies),

it is frequently assumed that all the blades (on a turbine disk, or in a helicopter rotor, for

example) are completely identical. Such a model is called a "tuned" system. A theoretical

model in which the effects of small amounts of imperfection or asymmetry are accounted

for is called a "mistuned" model. However, it is impossible to manufacture all the blades

in an assembly in such a way that they are all identical. Furthermore, small amounts of

imperfection are also introduced into the system when the blades are mounted on the disk or

hub. Moreover, wear and tear during normal operating conditions are inevitable, and these

further introduce another level of imperfection. The probability that all these imperfections

will somehow cancel one another out so that all the blades end up being exactly identical, is

almost zero. Therefore, one must conclude that perfect geometric symmetry does not exist

in a system of rotating blades. This lack of perfect geometric symmetry has serious physical

consequences--it induces mode coupling, which could be conservative or non-conservative

mode coupling.

It is easy to verify that curve veering may be induced by imperfection or "mistuning'.

First, one sets up a theoretical model accounting for mistuning (i.e imperfection, or geo-

metric asymmetry such as static unbalance). Then the mistuning parameter is set to zero

in one study, and to a non-zero value in another study, and the eigensolutions of the two

studies subsequently compared.

For example, consider a simple lumped parameter model of a centrifugally loaded bladed

disk with three blades on the disk, in which gyroscopic forces are ignored. Let ke be a

nominal coupling stiffness, kg a "grounding" stiffness, and _ a mistuning or imperfection

parameter of each blade. The following quasi-circulant matrix-form of the equations of 0

motion of the mistuned cyclic system may be written,

5t+ Kx = 0, (2a) "



where

xT = {xl, x2, x3}, (25)

• and

(kg + 2kc - 92) -kc -k¢

K= -kc (ks+2ko- 92)±e -kc (2c)
-k_ -he (k s + 2k_ -/22)

In the above, xi denotes the generalized coordinate of each blade. When the eigenvalues

of the system (2) are plotted against the rotation speed, two loci belonging to two distinct

modes of vibration would cross at /2 = 0 when e = 0. However, when the mistuning

parameter is set to e _ 0, the loci do not cross at /2 = 0 but veer away from each other.

The occurrence of curve veering is an evidence that a coupling of modes has taken place.

TMs is analogous to what Poincar6 calls the principle of "exchange of stabilities", and

which may be called the principle of "exchange of modes" in our context. When only

a small number of blades is involved (e.g. three or four, as in helicopters), it easier to

appreciate the foregoing. In this regard, one may cite a recent study by Wang _r Chopra

(1992).

3.2 Mode Coupling Induced by Static Unbalance

In addition to imperfection, mode coupling is also induced by static unbalance. In

theoretical models of a rotating blade, for example, it is frequently assumed that the elastic

and geometric axes of a blade section coincide. In such an idealized case, there is no coupling

whatsoever between the bending and torsional motions of the blade. Thus, a crossing of

the bending and torsion eigenvalue loci may be reported from a study made using such an
idealistic model.

In practical cases, however, an arbitrarily small amount of static unbalance of the cross-

section is unavoidable during the manufacturing process. Thus, there always exists a small

but non vanishing offset between the geometric and elastic axes, and this leads to a coupling

of modes. Consequently, static unbalance in a rotating blade is another source of mode

coupling.

3.3 Mode Coupling Induced by Gyroscopic or Circulatory Forces

Even if a single rotating blade had perfectly symmetric geometrical properties, or all

. traces of imperfections were somehow made to vanish completely in an assembly of blades,

there exists yet another source of coupling one has to contend with, and that is from rotation

and the aerodynamic environment.
,e

Some coupling is introduced by gyroscopic forces, or other skew-symmetric forces in-

duced by angular momentum. These are sometimes called "coriolis forces". Some coupling

is also introduced by skew-symmetric forces induced by displacement, and these are some-
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times called "circulatory forces". Whereas gyroscopic coupling arises mainly from rotation,

circulatory coupling originates mainly form aerodynamics. In some systems, both gyro-

scopic and circulatory coupling may be present at the same time; see, for instance, the

book by Ziegler (1968).

t

4. CONSERVATIVE AND NONCONSERVATIVE COUPLING

A mathematicalanalysisofthevibrationofa multi-degreeoffreedomsystemmay be

made inphysicalcoordinatesorinmodal coordinates.The equationsofmotionareusually

coupledinphysicalcoordinates,and generallyuncoupledinmodal coordinates(forsystems

withoutdamping,orwithproportionaldamping).Thisisthecasewhen themodes arenot

subjectto parametricallydependentcoupling.Ifthemodal characteristicsofa vibrating

systemdependon a parametersuchasrotationspeed,thenalthoughtheequationsofmotion

inmodal coordinatesmay be uncoupledata givenrotationspeedwherethemodes arewell

separated,thereneverthelesswillbe a couplingofmodes at anotherrotationspeedwhen

themodes become soclosethattheyinteract.

If,forexample,one makes a two mode approximationofa rotatingblade,onemay as-

sume that there is no parametric coupling whatsoever between the two modes. In that case,

one may write the following equations of motion for vibrations, in the modal coordinates of

bending and torsion for example, as

0 1 _ + 0 _(0) +_r__ Cr

Without loss of generalization, unit modal mass has been assumed in the above. The

eigenvaiue matrix, A, as in Au = Au, of system (3) may be written as

A= [w_(0)+_B_2-A 0 ]0 _(0) +_r__- _ (4)

where A = w2(f2). Because of the assumption that there is no modal coupling in (3) or (4),

the frequency loci are given by the equations

_1=_(_)= _(0)+ _,_; _ =_(_)=_(0)+ _r__. (5)

These loci will either intersect or diverge, as in Figs. 2 (a) or 2 (b), respectively.

However, one may also assume that a parametric coupling does indeed exist between

the bending and torsion modes. In that case, this coupling could be enforced in modal

coordinates either as a conservative coupling, or as a non-conservative coupling; see, for

instance, Crandall _: Mroszczyk (1988).



4.1 Conservative Coupling in Modal Coordinates

If we consider a system without damping, then a coupling could take place between

two modal coordinates, either in the modal mass matrix, or the modal stiffness matrix.

Assuming a unit modal mass matrix, as before, and if we let /3 _ fl(I2) represent the

" coupling strength in the modal mass matrix while the modal stiffness matrix is uncoupled,

one gets the following equations of motion in modal coordinates

Alternatively, one may assume that the conservative coupling exists in the modal stiffness

matrix but not in the modal mass matrix. In that case, the modal equations of motion may
be written as

9r + =0. (7)0 1 -fl w_,(O)+ ST!22

In either case, one gets a linear algebraic eigenvalue problem, the eigenmatrix A of which

is similarity invariant with the following matrix,

A= [ w_(O) + sBl'22- A -a ]-_ ta_(0)+_r__- _ ' (8)

where a = a(a), fl = fl(!2). The eigenvalues of A in (8) are

A1= taP(_) = ½[ta_(0)+ ta_(0) + (sB + sr)_ _] +

A_=ta_(s;)=½[ta_(0)+ta}(0)+ (sB+ ,r)p _]-

It may be noted that each of the two eigenvalues A1, A2 above, of the system (6) or (7)

with conservative coupling, is a function of both the bending tab and torsion tat non-rotating

frequencies, as well as the corresponding Stodola-Southwell coefficients for the bending and

torsion modes, SB and ST. If the conservative coupling vanishes completely, i.e a = 0, then

• (9) and (10) become, respectively,

)q = ta_(I2) = ta_(0)+ SBY2_; A2= ta_(Y2)= ta_(0)+ STY22, (11)

9
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which are the results previously obtained as (5) for the system without coupling. When the

results of Equation (11) are plotted in the form of a frequency diagram, an intersection of

loci results, as in Fig. 1 (b).
f

4.2 Non-conservative Coupling in Modal Coordinates

If the modal equations have non-conservative coupling in the modal mass matrix, one

gets an equation of motion of the form

-_ 1 _r + o _(o)+srS22

If, in the alternative, the non-conservative coupling exists in the modal stiffness matrix only,

then the modal equations of motion may be written as

0 1 CT + -_ w_,(0) + ST/'22 CT

The eigenvalue problem of (12) or (13) has an eigenmatrix A which is similar to the

following matrix,

A=[W2B(O)+sB_2--A a ] (14)-a _,(0) + STS_2- ;_ "

The eigenvaiues of the above are

_1=_1:(s2)=½[_(0)+_.(0)+ (sB+sr)S__]+

_:=_:i(s_)=½[_i(0)+_,(0)+(sB+sr)S__1-

- - ; (16)

The relative signs of the off-diagonal terms in (14) determine whether the coupling is con-

servative or non-conservative. A symmetric stiffness coupling is conservative, whereas a

skew-symmetric coupling is non-conservative.
I

5. COMPOSITION OF PLANE ALGEBRAIC CURVES

Most of the mathematical ideas and techniques currently used in engineering analysis
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date back to three or more centuries. Newer results arising from recent research in math-

ematics (from the 1950s to the present, for instance), are hardly utilized in engineering

analysis at present, mainly due to the inaccessible language utilized by mathematicians.

According to V. I. Arnol'd (1989, p. ix),

"The new discoveries ... have potentially extremely wide applications, but since

these results were discovered rather recently, they are discussed only in special-

ized [mathematical journals], and applications are impeded by the difficulty of

the mathematical exposition for the nonmathematicians."

In the course of our discussion in this paper, we shall find it useful to apply some rela-

• tively new results and ideas from algebraic geometry: the weak transversality theorem from

catastrophe theory (Thom & Levin, 1959; Thom, 1972), and the effect of small perturba-

tions on the composition of real algebraic curves, Brieskorn (1986).

The transversality theorems (the weak transversality theorem and Thorn's transversality

theorem) are very useful in studying the qualitative behavior of mathematical objects in the

neighborhood of a degeneracy. In recent years, these theorems have been used directly, or

indirectly through catastrophe theoretic formalisms, by Afolabi (1989, 1991, 1993a, 1993b),

to furnish insight into the qualitative behavior and "structural stability" of linear vibrating

systems.

The effect of small perturbations on the composition of real algebraic curves has been

discussed by Arnol'd (1983) and Brieskorn (1986), among others. In demonstrating that the

observable eigenvalue loci belonging to two distinct modes do not intersect, we shall find it

useful to study the local topology of real algebraic curves in the plane, in the neighborhood

of a presumed "intersection".

5.1 Linear Characteristics of Smooth Functions

Thom's classification theorem of catastrophe theory is based on the differentiable topol-

ogy of smooth functions in one or two variables, and their (uni)versal unfoldings. By a

"smooth function" is meant an infinitely differentiable function, also called a C °Ofunction.

The locus of a given eigenvalue of a rotating blade as a function of the rotation speed

is a Coo function. It follows from the Implicit Function Theorem that any C °O function

may be linearized everywhere, except in the neighborhood of its critical points. In general,

the eigenvalue loci of a rotating blade, or a system of rotating blades, do not have critical

• points (except, possibly, at the non-rotating frequency). Therefore, the eigenvalue loci may

be approximated as linear functions at almost all rotation speeds.

Consider the neighborhood of a point where two eigenvalue loci are presumed to inter-
€

sect. We now propose to show that given an arbitrarily small amount of perturbation (or,

a coupling of the two curves), the "intersection" will disappear, leaving either an avoided

crossing or a frequency coalescence.
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5.2 Effect of Coupling on the Composition of Plane Algebraic Curves

Suppose, in the neighborhood of a "crossing", that the two curves that are presumed to
t

intersect have linear representations, as a consequence of the Implicit Function Theorem.

Then, using the illustration in Fig. 1 (a) as an example, the two curves may be described

as polynomials of the first degree. Consequently, they are real algebraic curves in the plane.

Thus, we may write

Pl =- y = mix + Cl, p2 =- y = m2z Jr c2, (17)

where ml is the slope of the ith curve, and ci its intercept with the y-axis.

From the local algebra of plane algebraic curves, Arnol'd (1983, p. 78), or Brieskorn

(1986) the composite curve may be written as

P = Pl oP2 = 0, (18)

which corresponds, in this case, to an ordinary multiplication of the two polynomials, i.e.

(y - mix - el). (y - m2x - e2) = 0. (19)

However, the procedure of composition of algebraic curves is a mathematical "surgery",

in which the neighborhood of the intersection is deleted and the resulting pieces "glued"

together. All this is done mathematically, using standard techniques of algebraic topology;

see, for instance, the review article by Atiyah (1975). As a result of this "surgery", the

right hand side of (19) is not completely zero, but a small, non-vanishing real number,

here denoted by _. Thus, although (19) is theoretically imaginable, it is not practically

realizable, and (19) therefore becomes

(y- - Cl).(y- - = (20)

Expanding the above yields

y2-[(ml+m2)z+(cl+c2)]y+ [(clc2-_)+(mlc2+m2cl)z+mam2z2], (21)

which may be solved as a quadratic in y to get

(ml "Jrm2)x q- (Cl Jr c2) -4-v/_ml - m2)x q- (C1 -- C2)]2 Jr 4€
= 2 (22)

Equation (22) is a general form from which one could generate composite curves having

qualitatively different differentiable topological characteristics. For example, one could

generate the three qualitatively different curves or "loci" in Figs. 1 by using the following

12



parameters, ml - 1, m2 = -1, c1 = 1, C2 = 2 to get the parametric equation

(y-x-1)(y.x-2)-E=O, =_y2-3y-(x2-x-2+_)=O, (23)

which, when solved, yields

y(x; =1.5+ - 0.5)2+€. (24)

The degenerate case of (19) is obtained when the parameter f = 0, yielding the intersecting

loci in Fig. 1 (a). In this case, the effect of "perturbation" on the surgical procedure

involved in the composition of the two curves is assumed to have vanished completely. If,

however, we set $ > 0, i.e. to any arbitrary positive real number, then the curves in Fig.

1 (b) result. This is similar to the case of "curve veering" well known in structural dynamics.

Larger values of c give rise to stronger coupling, while smaller values correspond to weaker

coupling. As _ --* 0, the two curves develop very sharp local curvatures. They approach

each other arbitrarily closely, and may appear to cross each other when E is almost zero.

However, provided E does not exactly vanish, the two composing curves do not cross eacl_

other. If, on the other hand, we set E < 0, i.e. to any arbitrary negative real number, then

we get the curves shown in Fig. 1 (c). This is similar to the case of "frequency coalescence"

characteristic of coupled mode flutter, which is well known in aeroelasticity. The separation

between the two segments of the now surgically coupled curves indicate a flutter zone. At

any rotation speed within this zone, the rotating blade flutters, and becomes unstable. As

in the preceding case of curve veering, smaller values of E imply weaker coupling, while large

values imply strong coupling. The stronger the coupling, the larger the flutter zone.

Similar results to Figs. 1 may be obtained by using different values of mi, c_, and _ in

(20). For example, one may set ml = 1, m2 = 0, cl = 1, c2 = 2, and E = 0, _ > 0, E < 0

for the (a), (b) and (c) versions of Figs. 3. Globally, the eigenvalue loci as functions of

rotation speed may be illustrated as in Figs. 4.

From what has been said above, we come to the conclusion that a composition of two

plane curves yields a crossing if and only if _ = 0. Such an intersection is, however, not in

"general position", and an infinitesimally small amount of perturbation, signified by E _ 0,

will induce a topological surgery which manifests either as "curve veering" or "frequency

coalescence".

6. PHYSICAL SIGNIFICANCEOF CURVE VEERING AND FREQUENCY COALESCENCE

• Fig. 3 (a) shows two eigenvalue loci which intersect; the two loci in Fig. 3 (b) repel

each other, exhibiting the curve veering phenomenon; while Fig. 3 (c) is characterized by

the coalescence of the two loci.

13



If we superimpose the curves in Figs. 3 (a), (b) and (c), the quantitative difference

between the eigenvalue loci in a given diagram and the corresponding loci in the other two

diagrams is very small. The largest difference occurs near the point where the uncoupled

curves intersect in Fig. 3 (a). Yet, the dynamics represented by the three diagrams are

significantly different from one another in a qualitative sense. In this section, we discuss

the importance of frequency coalescence on the one hand, and curve veering on the other,

with regard to the flutter and stability of a rotating blade or a rotating system of blades.

6.1 Frequency Crossing Implies Eigenvalue Degeneracy

Two loci can only cross each other if and only if there is zero coupling between the

vibration modes represented by each eigenvalue locus. For example, the eigenlocus of the

torsion branch will cross that of the bending branch only if there is no coupling whatsoever

between the bending and torsion modes. If such a crossing of eigenloci were to occur in an

actual engineering system, then the system's eigenvalues must be degenerate at the point

where the two loci meet.

However, the occurrence of degenerate eigenvalues in a coupled two degree of freedom

vibrating system is impossible, from physical or engineering considerations, as discussed in

§2.3. Thus, the type of eigenvalue loci shown in Fig. 3 (a) cannot occur in a coupled system

with two degrees of freedom (e.g. bending and torsion degrees of freedom).

Theoretically, one could always assume, of course, that a coupled two degree of freedom

model with degenerate eigenvalues existed, in which case the loci would intersect. The

degenerate eigenvalues at each intersection point could also be assumed to have a linearly

independent set of eigenvectors, so that the eigenvalue and eigenvector matrices may be

written, respectively, as

A = U = , (25)
0 A ' 0 1

at the intersection point.

In such a case, the physically unrealizable system having the above eigensolution would

have "elastic stability" (since the eigenvectors are linearly independent), but not "structural

stability" in the topological sense (because the eigenvalues are degenerate).

6.2 Frequency Coalescence Implies Eigenvector Degeneracy and, Consequently, Flutter

Consider now, the case depicted in Fig. 3 (c). Each of the two points at which the loci

belonging to two distinct modes coalesce constitutes a flutter boundary. To see this, one

observes that the eigenvalue matrix of the system may be written in a canonical form due
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to Crandall & Mroszczyk (1988) as

A= [ 1-a -fl ]. (26)' /_ l+a

The eigenvalues, as well as the eigenvectors, of (26) are degenerate when a = :t:/_, which

are the two flutter boundaries. The implication of eigenvector degeneracy in this case is

very different from that of eigenvalue degeneracy considered in §6.1. An important fact for

system dynamics in this case is this: at the flutter boundaries, because the eigenvectors

are also degenerate, the system matrix cannot be diagonalized; it is only reducible to the

Jordan normal form. Thus, the eigensolution at the flutter boundaries may be written in

the Jordan canonical form

1 _ ' 0 0 ' 0 -1/_ '

where U is a matrix of ordinary eigenvectors, while V is a matrix of generalized eigenvectors

of the system matrix. From the foregoing, one observes that the eigenvalue matrix is not

diagonal, and the matrix of ordinary eigenvectors is singular. Due to the singularity, or non-

invertibility, of the ordinary eigenvector matrix, U, a matrix of generalized eigenvectors,

V, must be computed. By means of these generalized eigenvectors a non-singular linear

change of coordinates may be found so that the system matrix may be reduced to the Jordan

normal form. It is easy to show that the existence of a Jordan matrix in a linear vibrating

system necessarily implies the occurrence of flutter in that system.

6.3 Curve Veering Does Not Lead to Flutter

In order for flutter to occur in an undamped vibrating system with two degrees of free-

dom, the two eigenvalues of the system must coalesce at the flutter boundary, leading to

eigenvalue degeneracy. More significantly, the corresponding eigenvectors must also be de-

generate, so that the system matrix becomes non-diagonalizable at the flutter boundary.

Such a situation cannot arise in an undamped system which exhibits curve veering, for the

simple reason that the two eigenvalues repel each other when they get arbitrarily close,

thereby preventing a degeneracy or mode coalescence. The system exhibiting curve veering

may, nevertheless, lose elastic stability if net negative damping is later added, and it may

,_ lose elastic stability by "divergence", when one of its eigenvalues becomes zero.

7. _FFECT OF DAMPING ON FLUTTER BOUNDARIES

The discussion in the preceding sections of this paper has been based on a model without
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damping. In this section, we briefly discuss the role of damping on the systems exhibiting

curve veering on the one hand, and frequency coalescence on the other.

As discussed earlier, systems which give rise to curve veering only cannot flutter when

there is no damping. Introducing positive damping to the system is generally beneficial, •

and does not usually destabilize the system.

Undamped systems giving rise to frequency coalescence can behave in very interesting

ways when positive damping is added to the system. In the cases where mode coalescence is

due to circulatory forces (i.e. skew-symmetric stiffness coupling, which is the same as non-

conservative coupling), the introduction of positive damping to the system has a beneficial

effect--the flutter zone is reduced. On the other hand, where the coalescence is due to

gyroscopic forces, (i.e. skew-symmetric coupling via the damping matrix), the addition

of positive damping worsens the situation, and further destabilizes the system. Thus, the

flutter zone is widened by damping, so that flutter occurs at a lower rotation speed relative to

the corresponding undamped system. In either case (of circulatory or gyroscopic coupling),

damping may prevent the two vibration frequencies from coalescing. Therefore, a major

difference between a damped and an undamped model of a fluttering system is that the

eigenvalue loci actually coalesce at the flutter boundary when there is no damping, but they

do not necessarily coalesce at the flutter boundary when damping is added to the system.

8. CONCLUSIONS

In this paper, some standard results from the theory of plane algebraic curves and

from catastrophe theory have been used to show that the loci of two or more eigenvalues

depending on a common parameter (such as rotation speed,/2) almost always do not cross.

Cases where such eigenvalue loci are reported to have crossed exist only in unrealistic

theoretical models where it is assumed that no coupling exists between the two different

modes of vibration. If, in an experimental work insufficient data are recorded due to a

variety of practical factors, it is quite possible to erroneously interpolate the experimental

data in such a way as to imply that the loci cross each other. In reality, however, frequency

loci of undamped rotating blades do not cross, but must either repel each other leading to

curve veering, or attract each other leading to frequency coalescence.

From the mathematical point of view, a crossing of eigenvalue loci implies the existence

of degenerate eigenvalues. Degenerate objects of a category are not in "general position", ,

and are necessarily "structurally unstable". Therefore, they are unobservable. The existence

of degenerate eigenvalues also indicates a non-transversal condition. By the weak transver-

sality theorem, an arbitrarily small shift will lead to a bifurcation of a non-transversal

intersection leading to algebraic curves exhibiting veering or coalescence which will then be

in general position and are thus "structurally stable".

16



From the engineering point of view, a crossing of eigenvalue loci implies the existence of

degenerate eigenvalues, such that the eigenvectors are independent at the degeneracy. Two

or more eigenvalue loci of a rotating blade intersect only in theoretical studies where it is

presumed that some form of perfect symmetry exists, and there is zero coupling of modes.

Minute asymmetry or imperfections are inevitable in practice, and these lead to a coupling

• of neighboring modes. If the coupling is conservative, then the eigenvalue loci would exhibit

avoided crossings or curve veering. On the other hand, if there is non-conservative coupling,

the eigenvalue loci exhibit frequency coalescence.

Frequency coalescence in an undamped rotating blade, or system of blades, is very

dangerous since it leads to flutter. On the contrary, curve veering in an undamped rotating

blade or system of rotating blades is benign with respect to flutter.
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I (a) (b) (c)

rotation speed rotation speed rotation speed

Fig. 1: (a) Frequencycrossing;(b) curveveering;and (c)frequency coalescence.

rotation speed rotation speed

Fig. 2: Variation of resonance frequencies with rotation speed showing
(a) intersecting loci; (b) diverging loci.

rotation speed rotation speed rotation speed

Fig. 3: Two loci, one showing linearvariation of resonancefrequency with rotation speed, the other invariant with speed;(a)
frequency crossing;(b) curveveering; (c)frequency colescence.

(a) (b) (c)

rotation speed rotation speed rotation speed

Fig. 4: Nonlinear variation of resonancefrequencies with rotatiuonspeed showing
(a)frequency crossing;(b) curve veering; (c)frequency colescence.
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